Thermal/Acoustic Insulation

Test Method Development

Small Tube Configuration

Initial Intermediate Scale Test Configuration

- BETWEEN FRAME BLANKET
- OVER FRAME BLANKET

EFFECT OF PRE-HEATING FILM

Initial Intermediate Scale Test Configuration

COMPARTMENTALIZED TEST

Intermediate Scale Flame Propagation Test Arrangement in 707

Intermediate Scale Flame Propagation Tests in 707 Overhead

Camera

Metallized PET (2072K)

Class 1 PET

Intermediate Scale Flame Propagation Test Arrangement

Over Frame Blanket

Between Frame Blanket

Metallized PET (2072K)

Metallized PET (2072K)

Polyimide Film

Polyimide Film, Post Test Damage

Energy Release Rate Determination

• Thermocouple Location

Energy Release Rate determined by:

Average of two thermocouples at each end, then the sum of the two end averages.

$$ERR=(T1+T2)/2 + (T3+T4)/2$$

If the mass flow rates are equal at both ends, then this procedure gives an approximation to the Energy Release Rate.

Radiant Panel Test Results: Percentage of Sample Burned

Full Scale Flame Propagation Tests in DC-10 Overhead

Gas Sampling

Calorimeter

Full Scale Flame Propagation Test Arrangement in DC-10

Between Frame Blanket

Over Frame Blanket

Class 1 PET-F

TWIN-JET UPPER DECK SIDEWALL INSULATION INSTALLATION

Class 1 PET-F, Thermocouple Installation

Class 1 PET-O, Arrangement of Ducts

Class 1PET-O, Flame Propagation on Duct

Class 1 PET-O, Flame Propagation on Duct

Class 1 PET-F, Arrangement of Ducts

Class 1 PET-O, Post Test Damage

Metallized PET (2072L)

Metallized PET, Propagation Along Ducts

Metallized PET (2072L), Small Ignition Source

Metallized PET (2072L), Post Test Damage

Metallized PET (2072L), Post Test Damage

Metallized PET (2072L), Post Test Damage

Metallized PVF-O

Metallized PVF-O, Propagation Along Ducts

Metallized PVF-O, Propagation Along Ducts

Metallized PVF-O, Post Test Damage

Metallized PVF-O, Post Test Damage

Energy Release Rate Determination

• Thermocouple Location

Energy Release Rate determined by:

Average of two thermocouples at each end, then the sum of the two end averages.

$$ERR = (A2+A3)/2 + (K2 + K3)/2$$

If the mass flow rates are equal at both ends, then this procedure gives an approximation to the Energy Release Rate.

OSU Test Results, Heat Flux = 1.77 W/cm²

TUBULAR BLANKET TEST ARRANGEMENT

ROLLED INSULATION TEST

INSULATION TUBE TEST

EFFECT OF PRE-HEATING FILM

FULL-SCALE TEST RIG

Aluminum Skin Testing

Second Generation Curved Test Rig

All Material 0.125-inch Thickness Except Center Vertical Former, 0.1875-inch Thick

Park Model DPL 3400 (609) 344-7709 Burner Type

Monarch Manufacturing Co., Inc * 80 PLP (Semi-Solid)

Nozzle Type

Nozzle Type (alt)

Hago Manufacturing Co., Inc * 80°S.S. (Semi-Solid)

(908) 232-8687

Thermocouples

Thermo Electric Co., Inc * Type K Grounded, 1/8"

Ceramic Packed, Metal Sheathed (201) 843-5800

Omega Engineering, Inc * Air Velocity Meter 1-800-848-4286 Model HH30A

Heat Flux Transducer Vatell Corporation * Model 1000 Series

(540) 961-2001

Burner Calibration Requirements

Fuel Flowrate: 6 gal/hr

Air Velocity: 2200 ft/min

Temperature: 2100 ± 100°F

Heat Flux: 13.5 ± 0.5 Btu/ft-sec

* website available

Typical Calibration Rig

Proposed Burnthrough Test Standard

